skip to main content


Search for: All records

Creators/Authors contains: "Calcino, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present ALMA band 6 images of the 12CO, 13CO, and C18O J = 2-1 line emissions for the circumstellar disc around HD 169142, at ∼8 au spatial resolution. We resolve a central gas-depleted cavity, along with two independent near-symmetric ring-like structures in line emission: a well-defined inner gas ring [∼25 au] and a second relatively fainter and diffuse outer gas ring [∼65 au]. We identify a localized super-Keplerian feature or vertical flow with a magnitude of ∼75 ms−1 in the 12CO map. This feature has the shape of an arc that spans azimuthally across a position angle range of −60° to 45° and radially in between the B1[26au] and B2[59au] dust rings. Through reconstruction of the gas surface density profile, we find that the magnitude of the background perturbations by the pressure support and self-gravity terms are not significant enough to account for the kinematic excess. If of planetary origin, the relative depletion in the gas-density profile would suggest a 1 MJ planet. In contrast, the central cavity displays relatively smooth kinematics, suggesting either a low-mass companion and/or a binary orbit with a minimal vertical velocity component.

     
    more » « less
  2. ABSTRACT

    Cosmological analyses with type Ia supernovae (SNe Ia) often assume a single empirical relation between colour and luminosity (β) and do not account for varying host-galaxy dust properties. However, from studies of dust in large samples of galaxies, it is known that dust attenuation can vary significantly. Here, we take advantage of state-of-the-art modelling of galaxy properties to characterize dust parameters (dust attenuation AV, and a parameter describing the dust law slope RV) for 1100 Dark Energy Survey (DES) SN host galaxies. Utilizing optical and infrared data of the hosts alone, we find three key aspects of host dust that impact SN cosmology: (1) there exists a large range (∼1–6) of host RV; (2) high-stellar mass hosts have RV on average ∼0.7 lower than that of low-mass hosts; (3) for a subsample of 81 spectroscopically classified SNe there is a significant (>3σ) correlation between the Hubble diagram residuals of red SNe Ia and the host RV that when corrected for reduces scatter by $\sim 13{{\ \rm per\ cent}}$ and the significance of the ‘mass step’ to ∼1σ. These represent independent confirmations of recent predictions based on dust that attempted to explain the puzzling ‘mass step’ and intrinsic scatter (σint) in SN Ia analyses.

     
    more » « less
  3. ABSTRACT Reverberation mapping is a robust method to measure the masses of supermassive black holes outside of the local Universe. Measurements of the radius–luminosity (R−L) relation using the Mg ii emission line are critical for determining these masses near the peak of quasar activity at z ≈ 1−2, and for calibrating secondary mass estimators based on Mg ii that can be applied to large samples with only single-epoch spectroscopy. We present the first nine Mg ii lags from our 5-yr Australian Dark Energy Survey reverberation mapping programme, which substantially improves the number and quality of Mg ii lag measurements. As the Mg ii feature is somewhat blended with iron emission, we model and subtract both the continuum and iron contamination from the multiepoch spectra before analysing the Mg ii line. We also develop a new method of quantifying correlated spectroscopic calibration errors based on our numerous, contemporaneous observations of F-stars. The lag measurements for seven of our nine sources are consistent with both the H β and Mg ii R−L relations reported by previous studies. Our simulations verify the lag reliability of our nine measurements, and we estimate that the median false positive rate of the lag measurements is $4{{\ \rm per\ cent}}$. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)